INFORMATION TRANSMISSION PROBLEMS IN DUAL-PURPOSE IOT SOLUTIONS

Klishchuk V., Osypchuk S.

National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" E-mail: serg.osypchuk@gmail.com, vklishchuk@gmail.com

ПРОБЛЕМИ ПЕРЕДАВАННЯ ІНФОРМАЦІЇ В РІШЕННЯХ ІОТ ПОДВІЙНОГО ПРИЗНАЧЕННЯ

Our research delves into the crucial realm of IoT dual-purpose systems (DPS). We meticulously analyse the information transmission problems (ITP) in IoT DPS and provide a comprehensive list of techniques to mitigate them. We also present a high-level design of wearable health monitoring devices and a network diagram, showcasing one of the many applications of IoT DPS.

Internet of Things (IoT) refers to the network of physical objects or "things" embedded with sensors, software, and other technologies that enable them to connect and exchange data with other devices and systems over the Internet without human intervention.

The dual-purpose system (DPS) is designed to serve two distinct functions or purposes simultaneously.

IoT DPS, which can serve personal, industrial, or enterprise applications, is crucial in various fields, including engineering, healthcare, or military applications. By combining multiple capabilities of IoT applications into a single solution, IoT DPSs enhance efficiency and flexibility, thereby optimising resources and functionality. This is particularly significant in the face of increasing risks of conflicts and threats, underscoring the importance of IoT DPS research and development. *Table 1* showcases examples of IoT DPS designed explicitly for civil and military applications, emphasising their relevance.

Information transmission problem (ITP) refers to any issue or challenge that hinders the effective and reliable transfer of information from one point to another within a system or network. ITP can arise due to various factors, such as *technical limitations, environmental conditions, security concerns, or protocol inefficiencies*.

The *relevance of IoT DPS research and development* is the increased risks of conflicts and threats nowadays. Thus, proper attention must be paid to addressing the ITPs in IoT DPSs. *Table 2* shows critical ITPs in IoT DPSs.

Addressing ITP often requires developing and implementing appropriate technologies, protocols, and strategies tailored to the specific requirements and constraints of the communication system or network.

Task statement. The objective is to address the urgent need to reduce risks in military and civilian cases that could lead to lethal results: review the *wearable health monitoring devices (WHMD)* scenario [1-3]. This will be achieved by applying techniques for addressing ITPs in the IoT DPS listed in Table 2.

N⁰	Dual-purpose system (DPS)	Civil Application	Military Application
1	Wearable health	Monitoring of vital signs,	Remote health monitoring of
	monitoring devices	activity levels, sleep, patterns	soldiers in the field, tracking
		for patients with chronic	physiological indicators during
		conditions, fitness, tracking for wellness purposes	missions, assessing fatigue and stress levels
2	Unmanned aerial	Aerial photography, mapping,	Intelligence, surveillance,
	vehicles (UAVs) or	surveillance, monitoring of	reconnaissance, target
	Drones	infrastructure, agriculture,	acquisition, battlefield
		environmental conditions	situational awareness
3	Smart city infrastructure	Urban management, traffic	Critical infrastructure
		control, public safety,	protection, emergency
		environmental monitoring,	response coordination, support
		energy efficiency	for military installations
4	Border surveillance	Border security, customs	Border control, intelligence
	systems enforcement, monitorin		gathering, detection of illicit
		immigration, cross-border	activities, prevention of
		movements	unauthorised incursions
5	Emergency response Early warning systems, dis		Rapid deployment of forces for
	and disaster	preparedness, search and	disaster relief, coordination of
	management	rescue operations,	emergency response efforts
		humanitarian assistance	

Table 2. Information transmission problems (ITP) in the IoT DPS.

10			
№	ITP	Challenges	Techniques for addressing ITP
1	Communication	External factors	Channel coding, error detection and correction,
	channel noise and	that distort or	modulation techniques and multiposition keying
	signal	corrupt the	(MPK), antenna diversity, frequency hopping
	interference,	transmitted	spread spectrum (FHSS), adaptive filtering,
	reliability, and	signals, leading to	cyclic redundancy check (CRC), OFDM,
	error correction	errors in data	dynamic spectrum access,
		reception, reliable	automatic/selective/hybrid repeat request (ARQ),
		data transmission	LDPC codes, interleaving, concatenated coding,
			soft decision decoding, iterative decoding, and
			combinations of these techniques
2	Security threats	Unauthorised	Data encryption (AES, RSA, ECC),
		access to the data,	authentication and authorisation, keys
		confidentiality	management, secure protocols (TLS, IPSec,
		breach of the	SSH, HTTPS), firewalls, intrusion detection
		transmitted data,	systems (IDS), packet filtering, traffic analysis,
		data integrity or	virtual private networks (VPN), secure network
		availability	design (segmentation, least privilege access)
3	Reliable design	Lack of	Shock-absorbing materials, vibration-dampening
		shockproof,	mounts, solder joints and connectors, sealed
		waterproof,	enclosures, energy harvesting, energy-efficient
		autonomous	components, economic power-management
		power for long-	system, battery backup to allow communication
		lasting work	to continue

The WHMD solution involves attaching IoT sensors to human individuals to collect telemetry data, encrypting and transmitting that information to storage facilities and to authorised personnel. Advances in Microelectromechanical Systems (*MEMS*) technology have resulted in the development of small and robust sensors that can monitor various parameters such as human movement, temperature, and others. The modern concept of Wireless Body Area Sensor Networks (*WBASN*) allows the integration of different networks and devices for remote monitoring. The WBASN structure consists of three *key stages* (Figure 1):

1. Data gathering about and around the human body.

2. Communication between humans and the command centre via ZigBee, Bluetooth, UWB, IEEE 802.11 a/b/g/n/ah WLAN, and 3G/4G cellular technologies at different steps of network design.

3. The overall WHMD communication scenario is managed by appropriately reacting to the gathered data.

All the ITP problems in Table 2 are applicable to this IoT DPS WHMD use case, and proper techniques for addressing ITP can be used.

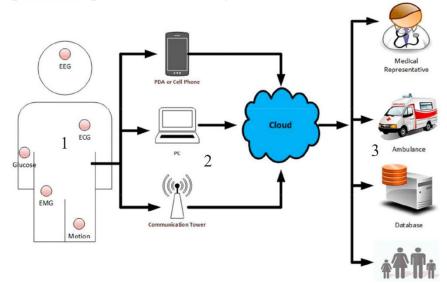


Figure 1. WBASN communication scheme.

In conclusion, our research has shown that IoT dual-purpose systems must be appropriately designed considering existing threats worldwide. By doing so, we can create reliable solutions with cost savings, eliminating the need to develop different systems. Our research provides techniques for addressing common information transmission problems.

References

- Al Ameen, M., Liu, J. & Kwak, K. Security and Privacy Issues in Wireless Sensor Networks for Healthcare Applications. J Med Syst 36, 93–101 (2012). https://doi.org/10.1007/s10916-010-9449-4.
- 2. Khan RA, Pathan A-SK. The state-of-the-art wireless body area sensor networks: A survey. *International Journal of Distributed Sensor Networks*. 2018; 14(4). https://journals.sagepub.com/doi/10.1177/1550147718768994.
- Bin Ahmad, M., Asif, M., Masood, K., Al Ghamdi, M. A., Almotiri, S. H., & Nagra, A. A. (2022). A Reliable Framework for Secure Communication and Health Assessment of Soldiers in the Battlefield. Sage Open, 12 (4). https://doi.org/10.1177/21582440221130300.