Wolfgang H. Gerstacker, P. Karunakaran


We consider the application of cognitive radio technology in future LTE-A systems. The carrier aggregation (CA) features of LTE-A can be exploited for enabling a cognitive operation in a subset of component carriers. Spectrum sharing between different network operators, device-to-device communications and the use of unlicensed bands for LTE-A are potential applications for such an operation. Sensing is expected to play an important role in such systems. To this end we explore the possibilities of spectrum sensing, especially the sensing while receiving a desired signal, in LTE-A systems. The results are expected to play an important role in the development of protocols for cognitive operation in LTE-A systems.



В статье рассматривается применение когнитивной радио технологии в будущих LTE-A системах. Свойства объединения несущих в LTE-A могут быть использованы для обеспечения когнитивного функционирования на подмножестве поднесущих. Распределение спектра между различными операторами сети, связь типа устройство-устройство, а также использование нелицензированных полос пропускания для LTE-A являются возможными сферами применения таких систем. Ожидается, что распознавание сыграет важную роль в таких системах. Для этого мы исследуем возможности спектрального распознавания, в особенности распознавания во время приема полезного сигнала в LTE-A системах. Ожидается, что полученные результаты сыграют ключевую роль в развитии протоколов для когнитивного функционирования в LTE-A системах.

Повний текст:



Cisco white paper, “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2013-2018”, 2014.

A. Khandekar, N. Bhushan, T. Ji and V. Vanghi, “LTE-Advanced: Heterogeneous networks”, Proc. of European Wireless Conference, April 2010.

D. Meddour, R. Tinku, and G. Yvon, “On the role of infrastructure sharing for mobile network operators in emerging markets”, Computer Networks, 2011.

J. Markendahl, Ö. Mäkitalo, B.G. Mölleryd and J. Werding, “Mobile broadband expansion calls for more spectrum or base stations – analysis of the value of spectrum and the role of spectrum aggregation”, Proc. of 21st European Regional ITS Conference, Copenhagen, 2010.

B. Han, et al. “Cellular traffic offloading through opportunistic communications: a case study”, Proc. of 5th ACM workshop on Challenged networks, ACM, 2010.

M. Song, C. Xin, Y. Zhao and X. Cheng, “Dynamic spectrum access: from cognitive radio to network radio”, IEEE Wireless Commun., February 2012.

I.F. Akyildiz, W.Y. Lee, M.C. Vuran and S. Mohanty, “NeXt generation/ dynamic spectrum access/cognitive radio wireless networks: A survey”, Computer Networks, vol. 50, issue 13, September 2006.

P. Karunakaran, T. Wagner, A. Scherb and W.H. Gerstacker, “Simultaneous reception and sensing using multiple antennas in cognitive cellular networks”, Proc. of 9th International ICST Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), June 2014.

P. Karunakaran, T. Wagner, A. Scherb and W.H. Gerstacker, “Sensing for spectrum sharing in cognitive LTE-A cellular networks”, Proc. of IEEE Wireless Comm. and Networking Conference (WCNC), April 2014.

A. Asadi, Q. Wang and V. Mancuso, “A survey on device-to-device communication in cellular networks”, available at, 2014.

T. Yucek, and H. Arslan, “A survey of spectrum sensing algorithms for cognitive radio applications”, IEEE Commun. Surveys & Tutorials, 2009.

W. Lee and D.H. Cho, “Enhanced spectrum sensing scheme in cognitive radio systems with MIMO antennae”, IEEE Trans. on Vehicular Technology, vol. 60, March 2011.

F.F. Digham, M.S. Alouini and M.K. Simon, “On the energy detection of unknown signals over fading channels”, Proc. of IEEE International Conference on Communications (ICC ’03), May 2003.

Copyright (c) 2017 Wolfgang H. Gerstacker, P. Karunakaran